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Abstract: The most popular public-key cryptography systems nowadays are RSA and Elliptic Curve 

Cryptography (ECC). ECC is a type of public-key cryptosystem which uses the additive group of 

points on a nonsingular elliptic curve as a cryptographic medium. The basic operation in most elliptic 

curve cryptosystems is a scalar multiplication. Scalar Multiplication is the costliest operation among 

all in ECC which takes 80% of key calculation time on Elliptic curve calculation. Hence Scalar 

multiplication is the most time- consuming operation in ECC protocols.  Scalar multiplication (or 

point multiplication) is the operation of calculating an integer multiple of an element in additive group 

of elliptic curve. in this paper, we classify and compare proposed scalar multiplication algorithms and 

compute their executing time. 
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1.  Introduction 

Compared with other approaches, such as the 

widely used Rivest-Shamir-Adleman (RSA) 

public key system, the Elliptic Curve 

Cryptography public key system is more 

appropriate for embedded systems with limited 

power and memory resources. 

ECC is considered much more suitable than 

other public-key algorithms. It consumes lower 

power, has better performance and can be 

implemented in small areas that can be achieved 

by ECC. In this paper, the Elliptic Curve 

properties are carefully analyzed. 

In fact, multi-scalar multiplications are the most 

time consuming operations for elliptic curve 

cryptosystems where implementations are 

mainly on devices with constrained 

computational power and memory (i.e. smart 

card), therefore, efficient operations are 

essential. It is denoted by kP where P is a curve 

point and k a scalar one. Basic scalar 

multiplication algorithm scans each bit of k and 

performs some curve-level operations based on 

the bit value. Scalar representation significantly 

impacts the number of point operations to be 

executed and overall computation time 

representation of elliptic curve elements. 

Multi-scalar multiplication is required in many 

elliptic curve cryptosystems (ECC)such as the 

verification process of ElGamal digital signature, 

verification process of ECDSA, provable-secure 

digital signatures [3,4], multi-party protocols [1] 

and  protocols of Brands [2]. 

Hence, efficiency of multi-scalar multiplications 

is essential in elliptic curve cryptosystems. The 

major building block of most elliptic curve 

cryptosystems is the computation of multi-scalar 

multiplication. 

Scalar multiplication corresponds to group 

element exponentiation in a multiplicative group, 

i.e. , for some x in the multiplicative group. 

Therefore, one can easily adapt classical 

exponentiation methods to scalar multiplication, 

replacing multiplication by addition as well as 

squaring by doubling. Mathematicians have dealt 
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with exponentiation methods for more than two 

thousand years and efficient methods have since 

developed. 

In this paper, we will present numerous scalar 

multiplication methods starting from generic 

ones up to curve specific ones. There are two 

main conditions that occur in practice: where P is 

a prime number and where it is not there is also a 

sub case in which the scalar is used several 

times. Additionally, different coding methods of 

k result in different scalar multiplication 

methods. The expected running time and the 

worst case running time are important to analyze 

a scalar multiplication method. Thus, one of 

them is always given in details when algorithm is 

coded. Algorithms are constructed for the P 

points in E(Fq) for some  where p is 

prime and m is in , since cryptosystems are 

designed on E(Fq). 

The following sections of this paper are 

organized as follows. Section 2 contains the 

introduction to a number of generic methods. 

Different methods based on the concept of fixed 

point would be explained in section 3. Section 4 

studies scalar multiplication methods on some 

specific curves. The notion of endomorphism 

would be described in section 5. Section 6 is 

consisted of the conclusion and results. 

 

2. Unknown Point  

In this section, both k and P are unknown until 

the run-time, i.e. they are placed into the 

program at the run time. Since k and P may vary, 

methods given in this section may be realized as 

generic methods. 

       2.1. Binary Method 

Binary method is the first known exponentiation 

method; therefore, it is a scalar multiplication 

method, too. Binary representation of the scalar 

multiplication enables us to interpret the 

multiplication as the cumulative addition of non-

zero components. Namely, if k has the binary 

representation  where , 

then . 

(2.1) 
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Equation 2.2 can be interpreted as starting from 

and summing up the terms  cumulatively 

for each non-zero up to to end up with kP. 

can be calculated by if is 

known. Thus, in order to speed up, must be 

calculated for each  by doubling 

the previous one, and adding it to the cumulative 

sum and if ki is 1. Because of which, this case of 

the method is known as double-and-add. Also, it 

is called right-to left binary method since it starts 

from k0 and ends with . The pseudo-code 

of right-to-left binary method is Algorithm 2.1. 

Equation 2.3 enables us to interpret the 

multiplication as starting from down to k0 

and adding P if ki is non-zero and continuously 

doubling whatever ki is. Contrary to the previous 

case, it is not necessary to keep at hand a 

doubled version of P. In other words, memory is 

not allocated for a doubled version of P. Because 

of similar reasons, this case of the method is 

known as add-and-double or left-to-right binary 

method. Its pseudo-code is given in the 

Algorithm 2.2. 

Algorithm 2.1.[6] 

Right-to-left binary method for scalar 

multiplication 

Input:  

Output: kP 

 

2. for i from 0 to l-1 do 

2.1.  if ki= 1 then Q = Q + P. 

2.2.  P = 2P. 

3. output(Q) 

Algorithm 2.2.[7] 

Left-to-right binary method for scalar 

multiplication 

Input:  

Output: kP 

 

2. for i from l-1 down to 0 do 

2.1 Q = 2Q 

2.1 if ki= 1 then Q = Q + P. 
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3. Output (Q) 

The running time of an algorithm is determined 

by the number of operations being performed 

throughout its execution. In order to do that, it is 

essential to analyze each line of the algorithm in 

detail. After the analysis, the expected running 

time of Algorithm 2.1 is l/2Additions + l 

Doubling denoted as 

 

Algorithm 2.2 has the same operations as 

Algorithm 2.1 with the reverse order, so they 

have the same running time. 

2.2. Non-Adjacent Form (NAF) 

Using the information from previous section, we 

know that the inverse of is −P 

= (x, x + y) in binary fields and −P = (x,−y) in 

the fields of characteristic . Thus, taking the 

inverse of an element on elliptic curve is very 

fast in terms of computational time. This brings 

up the question of representing k in the form 

           (2.5) 

 

Algorithm 2.3 to get fast computation for kP. 

When minus one comes across, subtraction of P 

is performed in addition to binary method during 

the scalar multiplication kP. A representation 

whose set also consists of negative values is 

called Signed Digit Representation (SDR). If the 

representation set is {-1, 0, 1}, then it is the most 

trivial type of signed digit representation known 

as signed binary representation. In the binary 

method, we have noticed that the running time of 

algorithm increases proportional to the number 

of 1s in its representation. Hence, the aim is to 

form a representation of an integer k whose 

weight (number of nonzero elements) and length 

is as small as possible. There is a representation 

which satisfies this aim: 

Definition 3.4.A. the non-adjacent form (NAF) 

of a positive integer k is an expression 

 where , and 

no two consecutive digits are nonzero. 

According to this definition, the length of NAF 
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is l. For any , NAF exists and has the 

following properties: 

Theorem 3.5.Let k be a positive integer, then  

1. K has a unique NAF denoted as NAF(k) [8]. 

2. NAF(k) has the fewest nonzero digits among 

the signed binary representations of k [8]. 

3. The expected value of the 1s of  NAF(k) over 

the length of  NAF(k) is 1/3 [9]. 

iv. The length of NAF(k) is at most "one" more 

than the length of the binary representation of k 

[9]. 

Algorithm 3.6 gives the recoding1 of a given 

integer k into NAF(k). Then, Algorithm 2.5, 

which takes NAF(k), computes the scalar 

multiplication kP using NAF representation of k 

and is called NAF method. We will, first, give 

the algorithms and then explain the steps 

involved. 

Algorithm 2.3.[8] 

Right-to-left NAF recoding 

Input: k = (kl−1, kl−2, . . . , k0)2 

Output: NAF(k) 

1. C0= 0 

2. For i = 0 to l do 

         2.1.  

         2.2.  

3.  

However, as we have seen in binary method, 

left-to-right scalar multiplication is more 

efficient than right to left one in terms of 

memory consumption. 

Algorithm 2.4.[10] 

Left-to-Right NAF recoding 

Input: (kl−1, . . . , k0)2 

Output: NAF(k) 

1. j= m, b = 0, kl = 0 

2. For i from l-1 down to 0 do 

      2.1. If (ki+1 = ki) then 

            2.1.1.  

            2.1.2. while (j >i+ 1) do 

                      2.1.2.1. 

 

            2.1.3. b= ki, j = j − 1 
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3.  

4. while (j >0) do 

        4.1.  

5.  

Algorithm 2.5. Left-to-right NAF multiplication 

 

                                

 

2. For i from l − 1 down to 0 do 

2.1. Q = 2Q 

2.2. If ki= 1 then Q = Q + P 

2.3. If ki= −1 then Q = Q − P 

3. Output (Q) 

Note that line 2.1 of Algorithm 2.5 performs 

exactly l time and by Theorem 3.5 (iii) and (iv). 

It is expected that lines 2.2 and 2.3 together 

perform approximately l/3 times. Therefore, 

expected running time of Algorithm 2.5 is: 

                                                    (2.6) 

2.3. Window Method  

If the digits of k representation are allowed to be 

the elements of a larger set instead of only {−1, 

0, 1}, then, the running time of the above 

algorithms decrease. In this case, not only P is 

added or subtracted, but also any small scalar 

multiple of P is added or subtracted. So, those 

values have to be calculated at the beginning of 

the scalar multiplication algorithm and saved to 

the memory. The window method may be 

interpreted as processing some consecutive digits 

of the scalar at a time. There are unsigned and 

signed versions of the window method. 

Unsigned width-w window representation of a 

positive integer k is where ki is 

either zero or an odd integer smaller than 

and . Similarly, signed width-w 

window representation of a positive integer k is 

 where |ki| is either zero or an odd 

integer smaller than and particularly 

width-w NAF representation of a positive integer 

k is  where |ki| is either zero or an 

odd integer smaller than  . Since 

width-w NAF reduces nonzero terms fairly, we 

will only deal with properties and running time 
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of it. In order to ensure that w consecutive digits 

contain at most one nonzero digit, reduction 

module has to be conducted by choosing the 

least residue as represented in line 2.2 of 

Algorithm 2.6. 

Algorithm 2.6.[11] 

Computing the NAFw of a positive integer 

 Input: window width w, positive integer k 

Output: NAFw(k) 

1. i= 0 

2. While k >0 do 

2.1. If k is even ki= 0 

2.2. Else ki= k mod s 2w, k = k − ki 

2.3. K= k/2, i= i+ 1 

3. Output (kl−1, . . . , k1, k0) 

As in the binary method and NAF method, if one 

can do the recoding of NAFw(k) left-to-right, 

scalar multiplication operation using NAFw(k) 

can be performed on-the-fly. That is, scalar 

multiplication and recoding operations can be 

performed simultaneously. 

Avanzi[24], Muir et al.[12] and Okeya et al.[13] 

independently obtained similar results of left-to-

right recoding of an integer k having the least 

Hamming weight. [12]’s left-to-right algorithm 

is optimal, and different from Avanzi’s and it can 

output up to two different recordings of the same 

integer, one of which is equal to that of Avanzi’s 

algorithm, whereas the other one differs in some 

of the less significant digits. Okeya et al. [14] 

also have a left-to-right algorithm, which is not 

equivalent to the w-NAF, but only gives 

asymptotic density estimates using Markov 

chains. 

Algorithm 2.7.[11] 

Left-to-right NAFw(k) multiplication 

Input: NAFw(k), P ЄE(Fq) 

Output: kP 

0. Compute 2P 

1. For i=3 up to 2w−1− 1 do 

       1.1 if i is odd then compute Pi = Pi−1 + 2P 

2.  

3. for i = l-1 down to 0 do 

       3.1. Q = 2Q 

       3.2.  
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            3.2.1. if ki>0 then Q = Q + Pki 

            3.2.2. else Q = Q − P−ki 

4. Output (Q) 

Running time of line 0 and line 1 of Algorithm 

2.7 is 1D and (2w−2 − 1) A respectively; pre-

computation cost, therefore, is 1D+ (2w−2 −1) A. 

Next, the running time of line 3.1 is lD and the 

expected total running time of line 3.2.1 and line 

3.2.2 is (l/(w + 1))A. To sum up, the expected 

running time of Algorithm 2.7 is 

                   (2.7) 

 

2.4.  Sliding Window Method 

This method operates left-to-right over the digits 

of k with a maximum window width of w, at 

which the value in the window is odd. In contrast 

to window method, it has no exact window 

width; but similar to window method, it ignores 

zero digits. This method can be applied to binary 

or NAF representation of k. It may be applied to 

NAFw(k) with the maximum window width of 

, but, the same algorithm of window NAF is 

obtained unless .  

Algorithm of sliding window method applied to 

NAF2 is given in Algorithm 2.8. So, it has to be 

computed first, and then placed into the 

algorithm. The first stage is the pre-computation 

of Pi for some i. Observe that a block of digits in 

an arbitrary window may have a maximum value 

of either 101010 . . . 10101(w-digits) or 101010 . 

. . 101001(w-digits) if w is odd or even 

respectively. Therefore, the value of the highest 

value block is either (2w+1 − 1)/3 or (2w+1 − 5)/3 

which implies that the upper bound for the pre 

computation stage is : 

                                      (2.7.1) 

Algorithm 2.8.[15] 

NAF Sliding window method for scalar 

multiplication 

Input: window width w, NAF(k), P ЄE(Fq) 

Output: kP 

0. P1 = P 

1. compute 2P 
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2. For i from 3 to 2(2w− (−1)w)/3 – 1 

         2.1. Pi = Pi−2 + 2P 

3.  

4.  

        4.1. if ki= 0 then t = 1, u = 0 

        4.2. else 

            4.2.1. t= 1; j = w 

            4.2.2. while (t = 1 and j >1) do 

                4.2.2.1. if (ki, . . . , ki−j+1) is odd t = j;       

u = (ki, . . . , ki−j+1) 

        4.3. Q = 2tQ 

        4.4. if u >0 then Q = Q + Pu; else if u <0 then 

Q = Q − P−u 

        4.5. i= i− t 

5. Output (Q)  

The average length of a run of zeros between 

windows in the NAF sliding window method is 

stated in [9] as 

                                       (2.8) 

Pre-computation stage consists of lines 0, 1 and 

2. Line 1 costs 1D and line 2costs ((2w− (−1)w)/3 

− 1)A. Thus, totally 

                               (2.8.1) 

is done at the pre-computation stage. Next, lines 

4.1, 4.2 are worthless. Line 4.3 is executed once, 

hence costs lD. In order to find the running time 

of line 4.4, we need to find the average number 

of nonzero terms and the number of zeros 

between the windows. The average length of a 

run of zeroes between windows in the NAF 

sliding window method is 

                                     (2.8.2) 

The expected cost of line 4.4 is 

                                                       (2.8.3) 

Therefore, the expected running time of 

Algorithm 2.8 is:  

     (2.8.4) 

2.5. Montgomery’s Ladder 

Montgomery [17] presented a ladder method to 

perform fast exponentiation (scalar 

multiplication). After that, [16] presented the 

elliptic curve version of Montgomery’s ladder. 

However, their ideas were applicable only for 
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non-super singular curves over binary fields. [14] 

Extended Montgomery’s ladder method for 

elliptic curves over non-binary fields. Hence, it 

became a generic method for computing scalar 

multiplication on elliptic curves. 

The general idea of this method is to start from 

the left-most bit of the scalar and a pair (P, 2P) 

corresponding to the left-most bit. Then, iterate 

to the next left-most bit with a pair (2P, P + 2P) 

(i.e. doubling first component of the previous 

pair and adding the first and second component 

of previous pair) or (P +2P, 2(2P)) (i.e. addition 

of first and second component of previous pair 

and doubling second component of previous 

pair) if the next left-most bit of the scalar is 0 or 

1, respectively. Continue this procedure until 

reaching the last bit and naturally the pair (kP, (k 

+ 1)P). This idea is called scalar multiplication 

equivalence of exponentiation. In the above 

iteration, it is enough to compute x-coordinate of 

both components for each pair. Each iteration 

requires only an addition and a doubling. Also, 

there is a shortcut for the addition operation for 

elliptic curves over binary fields: For any given 

Qi = (xi, yi) i= 1, 2, 3, 4 satisfying Q3 = Q1 + 

Q2 and Q4 = Q1 − Q2. Then, 

 

In our case, Q1 = (l + 1)P, Q2 = lP and Q4 = P 

are given and we are asked to compute (2l+1)P = 

Q3. Therefore, this shortcut could be applied at 

each iteration stage. Moreover, the y-coordinate 

of kP can be recovered, if needed, as: y1= x−1(x1 

+ x)[(x1 + x)(x2 + x) + x2+ y] + y, where kP= (x1, 

y1), (k + 1)P = (x2, y2) and P = (x, y). 

Algorithm 2.9.[16] 

Montgomery scalar multiplication 

Input: k = (kl−1, . . . , k1, k0), P ЄE(Fq) 

Output: kP 

1. X = P and Y = 2P 

2. for i from l − 2 down to 0 do 

     2.1. if ki= 0 then X = 2X and Y = X + Y 

     2.2. else X = X + Y and Y = 2Y 

3. Output(X) 
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Algorithm 2.9 performs a doubling and an 

addition for each i whatever ki is. Thus, the 

expected running-time of the algorithm is l(D + 

A). However, it is not necessary to compute the 

y-coordinate of corresponding points until the 

last iteration. Hence, it is not possible to compare 

the running-time of this algorithm with the 

running-time of the others. 

 

2.6. Non-Adjacent Form (2-NAF) Method 

In [26], NAF is a signed representation that uses 

elements from the set {-1, 0, 1}. It is a canonical 

representation with the smallest number of non-

zero digits for any scalar d, denoted by 

NAF(d)and it contains at most one non-zero digit 

among any two successive digits. Moreover, the 

length of NAF(d) is at most one more bit than its 

binary representation.  

To compute scalar multiplication of a scalar d, 

NAF performs two algorithms. The First 

algorithm converts the scalar to a signed 

representation while the second algorithm 

computes scalar multiplication.  

The first algorithm (algorithm 2.10) computes 

the NAF of a scalar d if w is fixed to two and the 

second (algorithm 2.11) uses obtained NAF for 

scalar multiplication when w = 2 .  

Algorithm 2.10 Computing the 2-NAF of a 

positive integer 

 Input: window w (w = 2), scalar d 

Output: NAFw(d) 

1. i = 0 

 2. While d ≥ 1 do  

     2.1. If d is odd, then di = fct(d,2w), d = d - di 

     2.2. else di = 0 

     2.3. d = d/2, i = i+1  

 3. Return (di-1, …, d1,d0)NAFw 

 

Algorithm 2.11 2-NAF method for scalar 

multiplication 

Input: Window w (w = 2), scalar  d =(di-1, …, 

d1,d0) 

PE (Fp) 
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Output: dP 

1.Compute Pi = iP  for i{1, 3, 5, …, (2-1) } 

2. Q = O 

3. For i = l – 1 down to 0 do    

     3.1. Q = 2Q 

     3.2. if di> 0 then Q = Q + Pdi 

     3.3.Q = Q - Pdi 

4. Return (Q)  

Function fct(d,2w) 

If d mod 2W>2W/2 then di = (d mod 2w)-2w 

Else di = d mod 2w 

Let l be the bit-length of a scalar d, the expected 

number of doublings and additions using 

algorithm 2.2 is approximately (l – 1) and l/3, 

respectively. Thus the cost of the NAF method 

is:  

(l-1)*D + (l/3)A                                         (2.9) 

3.  Fixed Point 

It was mentioned earlier in this paper that fixed 

point is the point for which a scalar 

multiplication is to be computed, and so the 

algorithm of scalar multiplication can be 

designed according to this privilege. For 

instance, if point P is fixed and some storage is 

available, then some of the multiples of  P can be 

pre-computed and saved to memory, and then 

used during the computation of scalar 

multiplication directly by memory call. 

      3.1. Fixed-Base Windowing Method 

If P is fixed, then the simplest idea that can be 

applied to the scalar multiplication is pre-

calculation of all doublings of P up to 2tP i.e. 2P, 

4P, 8P, . . . ,2t−1P where t is equal to 

approximately extension degree m of our finite 

field. Then, for any given scalar k, one can 

compute kP by summing up only 2iP for which ki 

is nonzero. Hence, all doublings are removed, 

and expected running time of binary algorithms 

decreases to (l/2) A. A refinement to the above 

idea is first described in [18] and more 

refinement is given in section 4.6.3 of [6]. 

Finally, [19] proposed a patented version of 

previous ideas. The basic idea behind these 

refinements is the following equality: 
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We now define the BGMW’s algorithm. Let 

 

 

 

Then 

 

 

 

 

                                  (3.4) 

Then, the corresponding algorithm is coded as, 

first, calculate Qj by cumulative addition of Kis 

and add Qjs together cumulatively to reach kP. 

Algorithm 3.1.[19] 

Binary BGMW’s algorithm 

 

 

Output: kP 

1.  

2. For j from 2w− 1 down to 1 do 

      2.1. for i from 0 up to d − 1 do 

           2.1.1. if j= Ki do B = B + Pi 

      2.2. A = A + B 

3. Output (A) 

The pre-computation stage is not included in the 

running-time. The Expected running-time of line 

2.2.1 of Algorithm 3.1 is (d/(2w− 1))(2w− 1) 

since the equation j = Ki occurs expectedly 

d/(2w− 1) times and the outer loop performs this 

expectancy 2w−1 times. Consequently, the 

addition at line 2.2.1 performs d times.  In fact, it 

costs (d − 1)A if we discard the trivial first 

addition which is the identity plus a point. line 

2.2 performs 2w− 1 times, but costs (2w− 2)A by 

discarding the first trivial addition. Therefore, 

the expected running time of Algorithm 3.1 is 

(2w+ d − 3)A, where  

Algorithm 3.2 uses the same argument presented 

above with NAF representation of k instead of 

binary representation. NAF(k) = (Kd−1, . . . 
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,K1,K0) where each Ki is in non-adjacent form. 

Thus, Ki  would be maximum if w is even or 

odd, respectively. 

                                                                       

(3.5) 

Algorithm 3.2.[20] 

NAF BGMW’s algorithm 

input: w,NAF(k), P 2 E(Fq) 

 

output: kP 

1.  

2. if w is even S = (2w+1 − 2)/3 and else S = (2w+1 

− 1)/3 

3.  

4. for j from S to down to 1 do 

      4.1. for i from 0 up to d-1 do 

           4.1.1. if j= Ki do B = B + Pi 

           4.1.2. else if −j = Ki do B = B − Pi 

           4.1.3. A = A + B 

5. output(A) 

, the expected running time of Algorithm 3.2 is 

(2w+1/3 + d − 2)A where d = .                

(3.6) 

        3.2. Fixed-Base Comb Method 

This method is also known as Lim-Lee Method. 

Let d = . If necessary, pad on the left side of 

the representation with zeros and then, split k 

into w concatenated parts: k = Kw−1, . . . ,K0. 

 

= k0P + k12P + k24P + ... + kt−12l−1P 

= k0P + ... + kd−12d−1P + k(w−1)d2(w−1)dP+ ... + 

kwd−12wd−1P 

= k0P + ... + (kd−1P)2d−1+ k(w−1)d2(w−1)dP+ ... + 

(kwd−12(w−1)dP)2d−1. 

 

The general idea of the method is to operate on k 

column by column. First, kd−1P + . . . + kid2id+ . 

. . + kwd−12wd−1 is calculated and doubled. 

Second, kd−2P + . . . + kid−12id−1+ . . . + 

kwd−22wd−2 is calculated and added to the results 

of the first calculation and the final result is 

doubled. the procedure continues  like this. 
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Finally, k0P + . . . + kid2i+ . . . +k(w−1)d2(w−1)d 

is calculated and added to the previous sum. The 

obtained result represents kP. In order to 

accelerate the computation process, one can 

compute [aw−1, . . . , a2, a1, a0]P = 

aw−12(w−1)d+. . .+a12dP+a0P for all possible 

values of string (aw−1, . . . , a2, a1, a0). The 

exact algorithm is given below. 

Algorithm 3.3.[21] 

Fixed-base comb method point multiplication 

 

Pre computed values: [aw−1, . . . , a2, a1, a0] P for 

all possible strings (aw−1, . . . , a0) 

output: kP 

1.  

2. For i from d − 1 down to 0 do 

2.1. Q = 2Q 

2.2.  

3. Output (Q) 

Probability of is a zero. 

Hence, it is a non-zero array with a probability of 

1 − 1/2w. the non-infinite addition in line 2.2 

occurs expectedly  times (−1 comes 

from the first infinity addition). 

Also, in line 2.1 a non-infinity doubling is 

executed (d − 1) times (−1 comes from the first 

infinity doubling). Therefore, the expected 

running time of Algorithm 3.3 is:  

                           (3.7) 

In the case of additional memory being available 

for the algorithm, two columns can be executed 

simultaneously. The idea is to divide the 

columns of k into two parts. Apply the previous 

procedure simultaneously for both sides. This 

idea is illustrated in Algorithm 3.4 

Algorithm 3.4.[21] 

Fixed-base comb method point multiplication 

with two tables 

 

 

 

Pre-computed values: [aw−1, a2, a1, a0]P and 

2e[aw−1, . . . , a2, a1, a0]P for all 

Possible string (aw−1. . . a2, a1, a0) 
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Output: kP 

1.  

2. for i from e-1 down to 0 do 

       2.1. Q = 2Q 

        

 

3. Output (Q) 

 

Similar to Algorithm 3.3, the expected time of 

Algorithm 3.4 can be calculated as 

. On the other hand, 

Algorithm 3.4 requires twice as much storage for 

pre computation as Algorithm 3.3. If memory is 

limited, the two algorithms can be compared for 

a given fixed amount of pre computation. 

 

4. Curve Specific Methods 

In this section, we will study scalar 

multiplication methods on some specific curves. 

These methods developed from special 

properties of these curves. Specific scalar 

multiplication methods are included into many 

standards, e.g. NIST, IEEE, ISO, ANSI. The 

methods, studied in the previous two sections, 

are also applicable to the curves in this section. 

Moreover, generic methods are used with curve 

specific methods in order to decrease the 

computation time of the scalar multiplication. 

      4.1. Koblitz Curves 

The non-supersingular curves defined over F2 

are called Koblitz curves [22], also known as 

anomalous binary curves. Any non-supersingular 

curve over F2 is isomorphic to one of the 

following two curves: 

E0 :y2 + xy= x3 + 1 

E1 :y2 + xy= x3+ x2+ 1. 

Hence, there exist only two non-isomorphic 

Koblitz Curves: E0, E1. By simply counting, 

#E0(F2) = 4 and #E1(F2) = 2. Then, #E0(F2m) = 

4n and , for some n and . In 

cryptography, n and are desired to be prime. N 

and can only be prime if m is prime; otherwise, 
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there exists a subgroup  of Ea(F ) for 

any d|m. 

 

       4.2.  

Let , Then, the Frobenius map on 

Ea(F2m) is 

 

 

 

Squaring in a binary field, when polynomial base 

is used, requires only insertion of zeros between 

the components and then reduction. This is very 

easy compared to other operations. Furthermore, 

when normal base is used instead of polynomial 

base, it is just a circular shift. Therefore, 

computing Frobenius map for any binary field 

element is very fast.  From the previous chapter, 

it is known that Frobenius map is an 

endomorphism over . Its characteristic 

polynomial is x2− tx+ 2 where t is the trace of 

Frobenius and equals to 2+1−# . 

Explicitly, the characteristic polynomial of 

Frobenius map over is x2+x+2, and 

similarly, over is x2−x+2. Let 

,then, the characteristic polynomial of 

Frobenius over Ea is . Hence, 

 

It can be observed that  is one of 

the roots of the characteristic polynomial of 

Frobenius map over  We can naturally 

lift the action of Frobenius map to the action of 

the commutative ring 

 

This shows that the natural action of  over 

Ea(F2m) induces the action of the ring  on 

: 

 

In general, for a scalar multiplication to be 

efficient, it is preferred to constitute the 

representation of the scalar as short as possible 

and small-sparse digits are surely desired. In the 

following sections, the length and digits of the 

representation of a scalar are investigated. Any 

element  can be written uniquely in the 
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form for some integers and 

since . In order to investigate the 

digits, we need to know the norm of an element 

in  

Theorem and proof at [11] enables us to 

represent any positive integer k in terms of  

Similar to binary representation of 

where ,  

representation of k can be obtained by repeatedly 

dividing k by and the digits ui are remainders of 

the division steps. Since , remainders 

are −1, 0 or 1.Then, any positive integer k can be 

represented in  representation uniquely as 

 where each digit . Any 

generic method studied in the previous sections 

can be applied to  representation of k. in 

order to decrease the number of point additions, 

namely, to decrease the number of non-zero 

digits, NAF method can be applied to this 

representation. It becomes so called   

NAF or TNAF  NAF is obtained in a 

similar way of  2-adic NAF. 

Definition 3.27.TNAF of an element 

where each 

and no two consecutive digits 

are nonzero. The length of the TNAF is l. 

Computation of TNAF( ) is similar to  

computation of NAF of an integer. 

   4.3. Scalar Multiplication on Koblitz Curves 

Since a specific coding of k (TNAF(k)) is 

obtained , generic methods are applicable in this 

case. Algorithm 4.1 performs a scalar 

multiplication by using previously observed 

properties of the curve and TNAF.. 

Algorithm 4.1.[11] 

TNAF scalar multiplication on Koblitz curves 

Input: integer k Є[1, n − 1], P 2 E(F2m) of order 

n 

Output: kP 

 

 

 

4. for i from l − 1 down to 0 
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4.2 if ui= 1 Q = Q + P 

4.3 if ui= −1 Q = Q − P 

5. Output (Q) 

Running-time of Algorithm 4.1 is l/3 A, since 

is a very fast calculation and the weight of 

TNAF(k) is 1/3. 

      4.4. Window TNAF Method 

Window method can be applied to TNAF(k) in 

order to increase the speed of the algorithm and 

to secure it against simple power attacks. Similar 

to width-w NAF method, width-w TNAF 

method processes w digits of. δ^'  at a time. 

However, obtaining width-w TNAF is different. 

[10]. Algorithm 4.2.[11] 

Window TNAF scalar multiplication method for 

Koblitz curves 

input: window width w, integer k in [1, n − 1], P 

Є  

Ea(F2m) of order n 

Output: kP 

1. use Algorithm 4.2 to compute = k part mod 

 

2. Use Algorithm 4.3 to compute 

 

3. Compute Pu= αuP, u Є{1, 3, 5, . . . , 2w−1-1} 

 

5. For i= l − 1 down to 0 

 

 

5.2.1 Let u be such that αu = uiorα−u = −ui 

5.2.2 if u >0 then Q = Q + Pu 

5.2.3 else Q = Q − P−u 

6. Output (Q) 

Pre-computation stage of Algorithm 3.38 costs 

(2w−2 − 1)A, while loop costs approximately 

. Thus, the expected running-time of 

Algorithm 3.4 is 

                                 (4.1) 

5.  Endomorphism 

Endomorphism has a crucial role in the theory of 

elliptic curves. An endomorphism of an elliptic 

curve E over a field K is defined as 

homomorphism on  given by rational 

functions. That is, 
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Where g1 and g2 are rational functions on E 

(quotient of polynomials) and 

 

for all P1 and  The set of all 

endomorphism of E over K forms a ring under 

addition and composition [25], called the 

endomorphism ring of E over K. The 

characteristic polynomial of an endomorphism 

is defined to be the least degree polynomial 

, 

if it exists. 

      5.1. Endomorphism-Based Scalar 

Multiplication 

Scalar multiplication can be performed faster by 

using a special endomorphism of the curves. In 

general, let be an endomorphism of an elliptic 

curve E(Fq) and let #E(Fq) be divisible by a 

prime r, but not by r2. Then, by the properties of 

commutative groups, there exists only one 

subgroup of order r of E(Fq). Having prime 

order implies being a cyclic subgroup. Let it be 

generated by P, then,  has order r, since is 

an endomorphism. Hence, , that is, 

for some  In fact,  is a 

root modulo r for characteristic polynomial of .  

We can apply above observations to scalar 

multiplication kP as follows: we find the 

expansion of k. However, since is too large, it 

is desirable to represent k as k = k1 + k2 (mod 

r) where k1 and k2 have approximately half the 

length of k. Then, kP= k1P +  k2P = k1P + 

(k2P). Computing  (k2P) is easy; it is just a 

one field multiplication. So, it is reduced to 

computing k1P and k2P. After finding k1 and k2, 

applying an interleaved right-to-left scalar 

multiplication method to k1P and k2P reduces 

the number of doubling operations 

approximately to half. if k1 and k2for a given k 

and ( decomposition of k,)can be computed 

efficiently, The gain is considerable. 

      5.2. Decomposition of Scalar 

It is necessary to find k1 and k2 satisfying k = 

f(k1, k2) = k1 + k2 (mod r) and number of bits 
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of k1 and k2 are approximately half  the number 

of  bits of  k, which means that k1 and k2 are 

small or is small. Thus, the aim is to find 

a short vector u such that f(u) = k. the Trivial 

solution is v = (k, 0), but this is not short. The 

approach is as following: 

(1) find two vectors v1 = (a1, b1) and v2 = (a2, 

b2) in Z × Z satisfying 

(i) v1 and v2 are linearly independent over R. 

(ii) f(v1) = f(v2) = 0. 

(iii) v1 and v2 are short themselves, that is, 

 is small since ai and bi have half the bits 

of  k which can be at least r, then it is 

approximately  

(2) find a vector v in the integer lattice generated 

by v1 and v2 that is close to (k, 0). Then, u = (k, 

0) − v is a short vector with 

f(u) = f((k, 0)) − f(v) = k − 0 = k. 

Note that sub-problems (1) and (2) may be 

solved using lattice basis reduction algorithms. 

However, [23]’s method is faster. 

In Table 4.1, there is a comparison of scalar 

multiplications in terms of their number of 

additions, doublings and memory consumption. 

      5.3. Mutual Opposite Form (Mof) 

The left-to-right recoding method eliminates the 

need for recoding and storing the multiplier in 

advance. Joye and Yen [27] first proposed the 

left-to-right recoding algorithm in the year 2000. 

In CRYPTO2004, Okeya [28] proposed a new 

efficient left-to-right recoding scheme called 

mutual opposite form (MOF).The unique 

property of the new singed binary representation 

is that Signs of adjacent non-zero bits (without 

considering 0 bits) are opposite. The maximum 

non-zero bit and the least non-zero bit 

are 1 and -1, respectively. All the positive 

integers can be represented by a unique MOF. 

      5.4. Joint Sparse Form (Jsf) 

Solinas presented a right-to-left method called 

Joint Sparse Form (JSF) for computing the 

signed binary representation of a pair of integers, 

which results in a minimal joint weight 
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compared to shamir.s method. The property of 

JSF is that the average joint weight among all 

JSF representations of two n-bit integers is 

n/2.Of any three consecutive positions, at least 

one is a double zero. Adjacent terms do not have 

opposite 

 signs, that is Xj,Xj+1 # -1 and YjYj+1 # -

1 

 If X , Xj+1 # - 1, then Yj+1 = ±1 and Yj 

= 0 

 If Yj, Yj+1 # - 1, then Xj+1 = ±1 and Xj 

= 0 

The Algorithm is used for generating joint sparse 

form of a pair of integers called JSF of integers. 

 

      5.5. Direct Doubling 

Among the various elliptic curve arithmetic 

operations, point doubling is quite costlier than 

point addition in the scalar multiplication over 

coordinate system. Sakai and Sakurai   proposed 

a scalar multiplication algorithm using direct 

computation of several doublings (which 

computes 2kP directly from P) without 

computing the intermediate points 2P, 22P, 

23P.2k-1P. The concept of direct computation of 

2kP was first suggested by Guajardo and Paar. 

The new doubling formula was reconstructed as 

below. 

A1=x1 

B1=3x1^2 + a 

C1= -y1 

D1=12A1 C1^2- B1^2 

x2= B1^2 . 8A1 C1^2 / (2C1)^2 

y2 = 8C1^4 . B1 D1 / (2C1)^3 

The computational complexity of this formula is 

(5S + 5M + I) and the existing method has the 

complexity of (6S + 4M + I). 

Table 1 – Comparison of Different Algorithms 
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3.2   - 

2.5   - 

2.7 
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2.8 
 

  

3.1 
 

- 
 

3.2 
 

- 
 

3.3 
 

(d-

1)  

3.4 
 

(e-

1)  

4.1  - - 

 

6. Conclusion 

In this paper, we studied the scalar multiplication 

on elliptic curves. We made mathematical and 

computational analysis of many scalar 

multiplication methods. 

In order to develop a scalar multiplication 

method or to improve an existing one, we first 

need to analyze the properties of elliptic curves 

carefully and then consider whether a recoding 

method of an integer corresponds to an efficient 

scalar multiplication method, and finally, use 

some algebraic methods on elliptic curves. 
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