

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.org & www.ijocit.ir

ISSN = 2345-3877

Classification and Comparison of Scalar Multiplication

Algorithms in Elliptic Curve Cryptosystems

Saeed Rahimi1, Abdolrasoul Mirghadri2

Department of cryptography, Emam Hosein university

Tehran, Iran

sae.rahimi@gmail.com1 , mirghadri@yahoo.com 2

Keywords: ECC, Cryptography, Elliptic Curve, Scalar Multiplication

Abstract: The most popular public-key cryptography systems nowadays are RSA and Elliptic Curve

Cryptography (ECC). ECC is a type of public-key cryptosystem which uses the additive group of

points on a nonsingular elliptic curve as a cryptographic medium. The basic operation in most elliptic

curve cryptosystems is a scalar multiplication. Scalar Multiplication is the costliest operation among

all in ECC which takes 80% of key calculation time on Elliptic curve calculation. Hence Scalar

multiplication is the most time- consuming operation in ECC protocols. Scalar multiplication (or

point multiplication) is the operation of calculating an integer multiple of an element in additive group

of elliptic curve. in this paper, we classify and compare proposed scalar multiplication algorithms and

compute their executing time.

http://www.ijocit.org/
http://www.ijocit.ir/
mailto:sae.rahimi@gmail.com1
mailto:mirghadri@yahoo.com

© 2014, IJOCIT All Rights Reserved Page 379

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

1. Introduction

Compared with other approaches, such as the

widely used Rivest-Shamir-Adleman (RSA)

public key system, the Elliptic Curve

Cryptography public key system is more

appropriate for embedded systems with limited

power and memory resources.

ECC is considered much more suitable than

other public-key algorithms. It consumes lower

power, has better performance and can be

implemented in small areas that can be achieved

by ECC. In this paper, the Elliptic Curve

properties are carefully analyzed.

In fact, multi-scalar multiplications are the most

time consuming operations for elliptic curve

cryptosystems where implementations are

mainly on devices with constrained

computational power and memory (i.e. smart

card), therefore, efficient operations are

essential. It is denoted by kP where P is a curve

point and k a scalar one. Basic scalar

multiplication algorithm scans each bit of k and

performs some curve-level operations based on

the bit value. Scalar representation significantly

impacts the number of point operations to be

executed and overall computation time

representation of elliptic curve elements.

Multi-scalar multiplication is required in many

elliptic curve cryptosystems (ECC)such as the

verification process of ElGamal digital signature,

verification process of ECDSA, provable-secure

digital signatures [3,4], multi-party protocols [1]

and protocols of Brands [2].

Hence, efficiency of multi-scalar multiplications

is essential in elliptic curve cryptosystems. The

major building block of most elliptic curve

cryptosystems is the computation of multi-scalar

multiplication.

Scalar multiplication corresponds to group

element exponentiation in a multiplicative group,

i.e. , for some x in the multiplicative group.

Therefore, one can easily adapt classical

exponentiation methods to scalar multiplication,

replacing multiplication by addition as well as

squaring by doubling. Mathematicians have dealt

© 2014, IJOCIT All Rights Reserved Page 380

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

with exponentiation methods for more than two

thousand years and efficient methods have since

developed.

In this paper, we will present numerous scalar

multiplication methods starting from generic

ones up to curve specific ones. There are two

main conditions that occur in practice: where P is

a prime number and where it is not there is also a

sub case in which the scalar is used several

times. Additionally, different coding methods of

k result in different scalar multiplication

methods. The expected running time and the

worst case running time are important to analyze

a scalar multiplication method. Thus, one of

them is always given in details when algorithm is

coded. Algorithms are constructed for the P

points in E(Fq) for some where p is

prime and m is in , since cryptosystems are

designed on E(Fq).

The following sections of this paper are

organized as follows. Section 2 contains the

introduction to a number of generic methods.

Different methods based on the concept of fixed

point would be explained in section 3. Section 4

studies scalar multiplication methods on some

specific curves. The notion of endomorphism

would be described in section 5. Section 6 is

consisted of the conclusion and results.

2. Unknown Point

In this section, both k and P are unknown until

the run-time, i.e. they are placed into the

program at the run time. Since k and P may vary,

methods given in this section may be realized as

generic methods.

 2.1. Binary Method

Binary method is the first known exponentiation

method; therefore, it is a scalar multiplication

method, too. Binary representation of the scalar

multiplication enables us to interpret the

multiplication as the cumulative addition of non-

zero components. Namely, if k has the binary

representation where ,

then .

(2.1)

© 2014, IJOCIT All Rights Reserved Page 381

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

Equation 2.2 can be interpreted as starting from

and summing up the terms cumulatively

for each non-zero up to to end up with kP.

can be calculated by if is

known. Thus, in order to speed up, must be

calculated for each by doubling

the previous one, and adding it to the cumulative

sum and if ki is 1. Because of which, this case of

the method is known as double-and-add. Also, it

is called right-to left binary method since it starts

from k0 and ends with . The pseudo-code

of right-to-left binary method is Algorithm 2.1.

Equation 2.3 enables us to interpret the

multiplication as starting from down to k0

and adding P if ki is non-zero and continuously

doubling whatever ki is. Contrary to the previous

case, it is not necessary to keep at hand a

doubled version of P. In other words, memory is

not allocated for a doubled version of P. Because

of similar reasons, this case of the method is

known as add-and-double or left-to-right binary

method. Its pseudo-code is given in the

Algorithm 2.2.

Algorithm 2.1.[6]

Right-to-left binary method for scalar

multiplication

Input:

Output: kP

2. for i from 0 to l-1 do

2.1. if ki= 1 then Q = Q + P.

2.2. P = 2P.

3. output(Q)

Algorithm 2.2.[7]

Left-to-right binary method for scalar

multiplication

Input:

Output: kP

2. for i from l-1 down to 0 do

2.1 Q = 2Q

2.1 if ki= 1 then Q = Q + P.

© 2014, IJOCIT All Rights Reserved Page 382

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

3. Output (Q)

The running time of an algorithm is determined

by the number of operations being performed

throughout its execution. In order to do that, it is

essential to analyze each line of the algorithm in

detail. After the analysis, the expected running

time of Algorithm 2.1 is l/2Additions + l

Doubling denoted as

Algorithm 2.2 has the same operations as

Algorithm 2.1 with the reverse order, so they

have the same running time.

2.2. Non-Adjacent Form (NAF)

Using the information from previous section, we

know that the inverse of is −P

= (x, x + y) in binary fields and −P = (x,−y) in

the fields of characteristic . Thus, taking the

inverse of an element on elliptic curve is very

fast in terms of computational time. This brings

up the question of representing k in the form

 (2.5)

Algorithm 2.3 to get fast computation for kP.

When minus one comes across, subtraction of P

is performed in addition to binary method during

the scalar multiplication kP. A representation

whose set also consists of negative values is

called Signed Digit Representation (SDR). If the

representation set is {-1, 0, 1}, then it is the most

trivial type of signed digit representation known

as signed binary representation. In the binary

method, we have noticed that the running time of

algorithm increases proportional to the number

of 1s in its representation. Hence, the aim is to

form a representation of an integer k whose

weight (number of nonzero elements) and length

is as small as possible. There is a representation

which satisfies this aim:

Definition 3.4.A. the non-adjacent form (NAF)

of a positive integer k is an expression

 where , and

no two consecutive digits are nonzero.

According to this definition, the length of NAF

© 2014, IJOCIT All Rights Reserved Page 383

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

is l. For any , NAF exists and has the

following properties:

Theorem 3.5.Let k be a positive integer, then

1. K has a unique NAF denoted as NAF(k) [8].

2. NAF(k) has the fewest nonzero digits among

the signed binary representations of k [8].

3. The expected value of the 1s of NAF(k) over

the length of NAF(k) is 1/3 [9].

iv. The length of NAF(k) is at most "one" more

than the length of the binary representation of k

[9].

Algorithm 3.6 gives the recoding1 of a given

integer k into NAF(k). Then, Algorithm 2.5,

which takes NAF(k), computes the scalar

multiplication kP using NAF representation of k

and is called NAF method. We will, first, give

the algorithms and then explain the steps

involved.

Algorithm 2.3.[8]

Right-to-left NAF recoding

Input: k = (kl−1, kl−2, . . . , k0)2

Output: NAF(k)

1. C0= 0

2. For i = 0 to l do

 2.1.

 2.2.

3.

However, as we have seen in binary method,

left-to-right scalar multiplication is more

efficient than right to left one in terms of

memory consumption.

Algorithm 2.4.[10]

Left-to-Right NAF recoding

Input: (kl−1, . . . , k0)2

Output: NAF(k)

1. j= m, b = 0, kl = 0

2. For i from l-1 down to 0 do

 2.1. If (ki+1 = ki) then

 2.1.1.

 2.1.2. while (j >i+ 1) do

 2.1.2.1.

 2.1.3. b= ki, j = j − 1

© 2014, IJOCIT All Rights Reserved Page 384

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

3.

4. while (j >0) do

 4.1.

5.

Algorithm 2.5. Left-to-right NAF multiplication

2. For i from l − 1 down to 0 do

2.1. Q = 2Q

2.2. If ki= 1 then Q = Q + P

2.3. If ki= −1 then Q = Q − P

3. Output (Q)

Note that line 2.1 of Algorithm 2.5 performs

exactly l time and by Theorem 3.5 (iii) and (iv).

It is expected that lines 2.2 and 2.3 together

perform approximately l/3 times. Therefore,

expected running time of Algorithm 2.5 is:

 (2.6)

2.3. Window Method

If the digits of k representation are allowed to be

the elements of a larger set instead of only {−1,

0, 1}, then, the running time of the above

algorithms decrease. In this case, not only P is

added or subtracted, but also any small scalar

multiple of P is added or subtracted. So, those

values have to be calculated at the beginning of

the scalar multiplication algorithm and saved to

the memory. The window method may be

interpreted as processing some consecutive digits

of the scalar at a time. There are unsigned and

signed versions of the window method.

Unsigned width-w window representation of a

positive integer k is where ki is

either zero or an odd integer smaller than

and . Similarly, signed width-w

window representation of a positive integer k is

 where |ki| is either zero or an odd

integer smaller than and particularly

width-w NAF representation of a positive integer

k is where |ki| is either zero or an

odd integer smaller than . Since

width-w NAF reduces nonzero terms fairly, we

will only deal with properties and running time

© 2014, IJOCIT All Rights Reserved Page 385

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

of it. In order to ensure that w consecutive digits

contain at most one nonzero digit, reduction

module has to be conducted by choosing the

least residue as represented in line 2.2 of

Algorithm 2.6.

Algorithm 2.6.[11]

Computing the NAFw of a positive integer

 Input: window width w, positive integer k

Output: NAFw(k)

1. i= 0

2. While k >0 do

2.1. If k is even ki= 0

2.2. Else ki= k mod s 2w, k = k − ki

2.3. K= k/2, i= i+ 1

3. Output (kl−1, . . . , k1, k0)

As in the binary method and NAF method, if one

can do the recoding of NAFw(k) left-to-right,

scalar multiplication operation using NAFw(k)

can be performed on-the-fly. That is, scalar

multiplication and recoding operations can be

performed simultaneously.

Avanzi[24], Muir et al.[12] and Okeya et al.[13]

independently obtained similar results of left-to-

right recoding of an integer k having the least

Hamming weight. [12]’s left-to-right algorithm

is optimal, and different from Avanzi’s and it can

output up to two different recordings of the same

integer, one of which is equal to that of Avanzi’s

algorithm, whereas the other one differs in some

of the less significant digits. Okeya et al. [14]

also have a left-to-right algorithm, which is not

equivalent to the w-NAF, but only gives

asymptotic density estimates using Markov

chains.

Algorithm 2.7.[11]

Left-to-right NAFw(k) multiplication

Input: NAFw(k), P ЄE(Fq)

Output: kP

0. Compute 2P

1. For i=3 up to 2w−1− 1 do

 1.1 if i is odd then compute Pi = Pi−1 + 2P

2.

3. for i = l-1 down to 0 do

 3.1. Q = 2Q

 3.2.

© 2014, IJOCIT All Rights Reserved Page 386

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

 3.2.1. if ki>0 then Q = Q + Pki

 3.2.2. else Q = Q − P−ki

4. Output (Q)

Running time of line 0 and line 1 of Algorithm

2.7 is 1D and (2w−2 − 1) A respectively; pre-

computation cost, therefore, is 1D+ (2w−2 −1) A.

Next, the running time of line 3.1 is lD and the

expected total running time of line 3.2.1 and line

3.2.2 is (l/(w + 1))A. To sum up, the expected

running time of Algorithm 2.7 is

 (2.7)

2.4. Sliding Window Method

This method operates left-to-right over the digits

of k with a maximum window width of w, at

which the value in the window is odd. In contrast

to window method, it has no exact window

width; but similar to window method, it ignores

zero digits. This method can be applied to binary

or NAF representation of k. It may be applied to

NAFw(k) with the maximum window width of

, but, the same algorithm of window NAF is

obtained unless .

Algorithm of sliding window method applied to

NAF2 is given in Algorithm 2.8. So, it has to be

computed first, and then placed into the

algorithm. The first stage is the pre-computation

of Pi for some i. Observe that a block of digits in

an arbitrary window may have a maximum value

of either 101010 . . . 10101(w-digits) or 101010 .

. . 101001(w-digits) if w is odd or even

respectively. Therefore, the value of the highest

value block is either (2w+1 − 1)/3 or (2w+1 − 5)/3

which implies that the upper bound for the pre

computation stage is :

 (2.7.1)

Algorithm 2.8.[15]

NAF Sliding window method for scalar

multiplication

Input: window width w, NAF(k), P ЄE(Fq)

Output: kP

0. P1 = P

1. compute 2P

© 2014, IJOCIT All Rights Reserved Page 387

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

2. For i from 3 to 2(2w− (−1)w)/3 – 1

 2.1. Pi = Pi−2 + 2P

3.

4.

 4.1. if ki= 0 then t = 1, u = 0

 4.2. else

 4.2.1. t= 1; j = w

 4.2.2. while (t = 1 and j >1) do

 4.2.2.1. if (ki, . . . , ki−j+1) is odd t = j;

u = (ki, . . . , ki−j+1)

 4.3. Q = 2tQ

 4.4. if u >0 then Q = Q + Pu; else if u <0 then

Q = Q − P−u

 4.5. i= i− t

5. Output (Q)

The average length of a run of zeros between

windows in the NAF sliding window method is

stated in [9] as

 (2.8)

Pre-computation stage consists of lines 0, 1 and

2. Line 1 costs 1D and line 2costs ((2w− (−1)w)/3

− 1)A. Thus, totally

 (2.8.1)

is done at the pre-computation stage. Next, lines

4.1, 4.2 are worthless. Line 4.3 is executed once,

hence costs lD. In order to find the running time

of line 4.4, we need to find the average number

of nonzero terms and the number of zeros

between the windows. The average length of a

run of zeroes between windows in the NAF

sliding window method is

 (2.8.2)

The expected cost of line 4.4 is

 (2.8.3)

Therefore, the expected running time of

Algorithm 2.8 is:

 (2.8.4)

2.5. Montgomery’s Ladder

Montgomery [17] presented a ladder method to

perform fast exponentiation (scalar

multiplication). After that, [16] presented the

elliptic curve version of Montgomery’s ladder.

However, their ideas were applicable only for

© 2014, IJOCIT All Rights Reserved Page 388

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

non-super singular curves over binary fields. [14]

Extended Montgomery’s ladder method for

elliptic curves over non-binary fields. Hence, it

became a generic method for computing scalar

multiplication on elliptic curves.

The general idea of this method is to start from

the left-most bit of the scalar and a pair (P, 2P)

corresponding to the left-most bit. Then, iterate

to the next left-most bit with a pair (2P, P + 2P)

(i.e. doubling first component of the previous

pair and adding the first and second component

of previous pair) or (P +2P, 2(2P)) (i.e. addition

of first and second component of previous pair

and doubling second component of previous

pair) if the next left-most bit of the scalar is 0 or

1, respectively. Continue this procedure until

reaching the last bit and naturally the pair (kP, (k

+ 1)P). This idea is called scalar multiplication

equivalence of exponentiation. In the above

iteration, it is enough to compute x-coordinate of

both components for each pair. Each iteration

requires only an addition and a doubling. Also,

there is a shortcut for the addition operation for

elliptic curves over binary fields: For any given

Qi = (xi, yi) i= 1, 2, 3, 4 satisfying Q3 = Q1 +

Q2 and Q4 = Q1 − Q2. Then,

In our case, Q1 = (l + 1)P, Q2 = lP and Q4 = P

are given and we are asked to compute (2l+1)P =

Q3. Therefore, this shortcut could be applied at

each iteration stage. Moreover, the y-coordinate

of kP can be recovered, if needed, as: y1= x−1(x1

+ x)[(x1 + x)(x2 + x) + x2+ y] + y, where kP= (x1,

y1), (k + 1)P = (x2, y2) and P = (x, y).

Algorithm 2.9.[16]

Montgomery scalar multiplication

Input: k = (kl−1, . . . , k1, k0), P ЄE(Fq)

Output: kP

1. X = P and Y = 2P

2. for i from l − 2 down to 0 do

 2.1. if ki= 0 then X = 2X and Y = X + Y

 2.2. else X = X + Y and Y = 2Y

3. Output(X)

© 2014, IJOCIT All Rights Reserved Page 389

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

Algorithm 2.9 performs a doubling and an

addition for each i whatever ki is. Thus, the

expected running-time of the algorithm is l(D +

A). However, it is not necessary to compute the

y-coordinate of corresponding points until the

last iteration. Hence, it is not possible to compare

the running-time of this algorithm with the

running-time of the others.

2.6. Non-Adjacent Form (2-NAF) Method

In [26], NAF is a signed representation that uses

elements from the set {-1, 0, 1}. It is a canonical

representation with the smallest number of non-

zero digits for any scalar d, denoted by

NAF(d)and it contains at most one non-zero digit

among any two successive digits. Moreover, the

length of NAF(d) is at most one more bit than its

binary representation.

To compute scalar multiplication of a scalar d,

NAF performs two algorithms. The First

algorithm converts the scalar to a signed

representation while the second algorithm

computes scalar multiplication.

The first algorithm (algorithm 2.10) computes

the NAF of a scalar d if w is fixed to two and the

second (algorithm 2.11) uses obtained NAF for

scalar multiplication when w = 2 .

Algorithm 2.10 Computing the 2-NAF of a

positive integer

 Input: window w (w = 2), scalar d

Output: NAFw(d)

1. i = 0

 2. While d ≥ 1 do

 2.1. If d is odd, then di = fct(d,2w), d = d - di

 2.2. else di = 0

 2.3. d = d/2, i = i+1

 3. Return (di-1, …, d1,d0)NAFw

Algorithm 2.11 2-NAF method for scalar

multiplication

Input: Window w (w = 2), scalar d =(di-1, …,

d1,d0)

PE (Fp)

© 2014, IJOCIT All Rights Reserved Page 390

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

Output: dP

1.Compute Pi = iP for i{1, 3, 5, …, (2-1) }

2. Q = O

3. For i = l – 1 down to 0 do

 3.1. Q = 2Q

 3.2. if di> 0 then Q = Q + Pdi

 3.3.Q = Q - Pdi

4. Return (Q)

Function fct(d,2w)

If d mod 2W>2W/2 then di = (d mod 2w)-2w

Else di = d mod 2w

Let l be the bit-length of a scalar d, the expected

number of doublings and additions using

algorithm 2.2 is approximately (l – 1) and l/3,

respectively. Thus the cost of the NAF method

is:

(l-1)*D + (l/3)A (2.9)

3. Fixed Point

It was mentioned earlier in this paper that fixed

point is the point for which a scalar

multiplication is to be computed, and so the

algorithm of scalar multiplication can be

designed according to this privilege. For

instance, if point P is fixed and some storage is

available, then some of the multiples of P can be

pre-computed and saved to memory, and then

used during the computation of scalar

multiplication directly by memory call.

 3.1. Fixed-Base Windowing Method

If P is fixed, then the simplest idea that can be

applied to the scalar multiplication is pre-

calculation of all doublings of P up to 2tP i.e. 2P,

4P, 8P, . . . ,2t−1P where t is equal to

approximately extension degree m of our finite

field. Then, for any given scalar k, one can

compute kP by summing up only 2iP for which ki

is nonzero. Hence, all doublings are removed,

and expected running time of binary algorithms

decreases to (l/2) A. A refinement to the above

idea is first described in [18] and more

refinement is given in section 4.6.3 of [6].

Finally, [19] proposed a patented version of

previous ideas. The basic idea behind these

refinements is the following equality:

© 2014, IJOCIT All Rights Reserved Page 391

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

We now define the BGMW’s algorithm. Let

Then

 (3.4)

Then, the corresponding algorithm is coded as,

first, calculate Qj by cumulative addition of Kis

and add Qjs together cumulatively to reach kP.

Algorithm 3.1.[19]

Binary BGMW’s algorithm

Output: kP

1.

2. For j from 2w− 1 down to 1 do

 2.1. for i from 0 up to d − 1 do

 2.1.1. if j= Ki do B = B + Pi

 2.2. A = A + B

3. Output (A)

The pre-computation stage is not included in the

running-time. The Expected running-time of line

2.2.1 of Algorithm 3.1 is (d/(2w− 1))(2w− 1)

since the equation j = Ki occurs expectedly

d/(2w− 1) times and the outer loop performs this

expectancy 2w−1 times. Consequently, the

addition at line 2.2.1 performs d times. In fact, it

costs (d − 1)A if we discard the trivial first

addition which is the identity plus a point. line

2.2 performs 2w− 1 times, but costs (2w− 2)A by

discarding the first trivial addition. Therefore,

the expected running time of Algorithm 3.1 is

(2w+ d − 3)A, where

Algorithm 3.2 uses the same argument presented

above with NAF representation of k instead of

binary representation. NAF(k) = (Kd−1, . . .

© 2014, IJOCIT All Rights Reserved Page 392

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

,K1,K0) where each Ki is in non-adjacent form.

Thus, Ki would be maximum if w is even or

odd, respectively.

(3.5)

Algorithm 3.2.[20]

NAF BGMW’s algorithm

input: w,NAF(k), P 2 E(Fq)

output: kP

1.

2. if w is even S = (2w+1 − 2)/3 and else S = (2w+1

− 1)/3

3.

4. for j from S to down to 1 do

 4.1. for i from 0 up to d-1 do

 4.1.1. if j= Ki do B = B + Pi

 4.1.2. else if −j = Ki do B = B − Pi

 4.1.3. A = A + B

5. output(A)

, the expected running time of Algorithm 3.2 is

(2w+1/3 + d − 2)A where d = .

(3.6)

 3.2. Fixed-Base Comb Method

This method is also known as Lim-Lee Method.

Let d = . If necessary, pad on the left side of

the representation with zeros and then, split k

into w concatenated parts: k = Kw−1, . . . ,K0.

= k0P + k12P + k24P + ... + kt−12l−1P

= k0P + ... + kd−12d−1P + k(w−1)d2(w−1)dP+ ... +

kwd−12wd−1P

= k0P + ... + (kd−1P)2d−1+ k(w−1)d2(w−1)dP+ ... +

(kwd−12(w−1)dP)2d−1.

The general idea of the method is to operate on k

column by column. First, kd−1P + . . . + kid2id+ .

. . + kwd−12wd−1 is calculated and doubled.

Second, kd−2P + . . . + kid−12id−1+ . . . +

kwd−22wd−2 is calculated and added to the results

of the first calculation and the final result is

doubled. the procedure continues like this.

© 2014, IJOCIT All Rights Reserved Page 393

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

Finally, k0P + . . . + kid2i+ . . . +k(w−1)d2(w−1)d

is calculated and added to the previous sum. The

obtained result represents kP. In order to

accelerate the computation process, one can

compute [aw−1, . . . , a2, a1, a0]P =

aw−12(w−1)d+. . .+a12dP+a0P for all possible

values of string (aw−1, . . . , a2, a1, a0). The

exact algorithm is given below.

Algorithm 3.3.[21]

Fixed-base comb method point multiplication

Pre computed values: [aw−1, . . . , a2, a1, a0] P for

all possible strings (aw−1, . . . , a0)

output: kP

1.

2. For i from d − 1 down to 0 do

2.1. Q = 2Q

2.2.

3. Output (Q)

Probability of is a zero.

Hence, it is a non-zero array with a probability of

1 − 1/2w. the non-infinite addition in line 2.2

occurs expectedly times (−1 comes

from the first infinity addition).

Also, in line 2.1 a non-infinity doubling is

executed (d − 1) times (−1 comes from the first

infinity doubling). Therefore, the expected

running time of Algorithm 3.3 is:

 (3.7)

In the case of additional memory being available

for the algorithm, two columns can be executed

simultaneously. The idea is to divide the

columns of k into two parts. Apply the previous

procedure simultaneously for both sides. This

idea is illustrated in Algorithm 3.4

Algorithm 3.4.[21]

Fixed-base comb method point multiplication

with two tables

Pre-computed values: [aw−1, a2, a1, a0]P and

2e[aw−1, . . . , a2, a1, a0]P for all

Possible string (aw−1. . . a2, a1, a0)

© 2014, IJOCIT All Rights Reserved Page 394

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

Output: kP

1.

2. for i from e-1 down to 0 do

 2.1. Q = 2Q

3. Output (Q)

Similar to Algorithm 3.3, the expected time of

Algorithm 3.4 can be calculated as

. On the other hand,

Algorithm 3.4 requires twice as much storage for

pre computation as Algorithm 3.3. If memory is

limited, the two algorithms can be compared for

a given fixed amount of pre computation.

4. Curve Specific Methods

In this section, we will study scalar

multiplication methods on some specific curves.

These methods developed from special

properties of these curves. Specific scalar

multiplication methods are included into many

standards, e.g. NIST, IEEE, ISO, ANSI. The

methods, studied in the previous two sections,

are also applicable to the curves in this section.

Moreover, generic methods are used with curve

specific methods in order to decrease the

computation time of the scalar multiplication.

 4.1. Koblitz Curves

The non-supersingular curves defined over F2

are called Koblitz curves [22], also known as

anomalous binary curves. Any non-supersingular

curve over F2 is isomorphic to one of the

following two curves:

E0 :y2 + xy= x3 + 1

E1 :y2 + xy= x3+ x2+ 1.

Hence, there exist only two non-isomorphic

Koblitz Curves: E0, E1. By simply counting,

#E0(F2) = 4 and #E1(F2) = 2. Then, #E0(F2m) =

4n and , for some n and . In

cryptography, n and are desired to be prime. N

and can only be prime if m is prime; otherwise,

© 2014, IJOCIT All Rights Reserved Page 395

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

there exists a subgroup of Ea(F) for

any d|m.

 4.2.

Let , Then, the Frobenius map on

Ea(F2m) is

Squaring in a binary field, when polynomial base

is used, requires only insertion of zeros between

the components and then reduction. This is very

easy compared to other operations. Furthermore,

when normal base is used instead of polynomial

base, it is just a circular shift. Therefore,

computing Frobenius map for any binary field

element is very fast. From the previous chapter,

it is known that Frobenius map is an

endomorphism over . Its characteristic

polynomial is x2− tx+ 2 where t is the trace of

Frobenius and equals to 2+1−# .

Explicitly, the characteristic polynomial of

Frobenius map over is x2+x+2, and

similarly, over is x2−x+2. Let

,then, the characteristic polynomial of

Frobenius over Ea is . Hence,

It can be observed that is one of

the roots of the characteristic polynomial of

Frobenius map over We can naturally

lift the action of Frobenius map to the action of

the commutative ring

This shows that the natural action of over

Ea(F2m) induces the action of the ring on

:

In general, for a scalar multiplication to be

efficient, it is preferred to constitute the

representation of the scalar as short as possible

and small-sparse digits are surely desired. In the

following sections, the length and digits of the

representation of a scalar are investigated. Any

element can be written uniquely in the

© 2014, IJOCIT All Rights Reserved Page 396

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

form for some integers and

since . In order to investigate the

digits, we need to know the norm of an element

in

Theorem and proof at [11] enables us to

represent any positive integer k in terms of

Similar to binary representation of

where ,

representation of k can be obtained by repeatedly

dividing k by and the digits ui are remainders of

the division steps. Since , remainders

are −1, 0 or 1.Then, any positive integer k can be

represented in representation uniquely as

 where each digit . Any

generic method studied in the previous sections

can be applied to representation of k. in

order to decrease the number of point additions,

namely, to decrease the number of non-zero

digits, NAF method can be applied to this

representation. It becomes so called

NAF or TNAF NAF is obtained in a

similar way of 2-adic NAF.

Definition 3.27.TNAF of an element

where each

and no two consecutive digits

are nonzero. The length of the TNAF is l.

Computation of TNAF() is similar to

computation of NAF of an integer.

 4.3. Scalar Multiplication on Koblitz Curves

Since a specific coding of k (TNAF(k)) is

obtained , generic methods are applicable in this

case. Algorithm 4.1 performs a scalar

multiplication by using previously observed

properties of the curve and TNAF..

Algorithm 4.1.[11]

TNAF scalar multiplication on Koblitz curves

Input: integer k Є[1, n − 1], P 2 E(F2m) of order

n

Output: kP

4. for i from l − 1 down to 0

© 2014, IJOCIT All Rights Reserved Page 397

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

4.2 if ui= 1 Q = Q + P

4.3 if ui= −1 Q = Q − P

5. Output (Q)

Running-time of Algorithm 4.1 is l/3 A, since

is a very fast calculation and the weight of

TNAF(k) is 1/3.

 4.4. Window TNAF Method

Window method can be applied to TNAF(k) in

order to increase the speed of the algorithm and

to secure it against simple power attacks. Similar

to width-w NAF method, width-w TNAF

method processes w digits of. δ^' at a time.

However, obtaining width-w TNAF is different.

[10]. Algorithm 4.2.[11]

Window TNAF scalar multiplication method for

Koblitz curves

input: window width w, integer k in [1, n − 1], P

Є

Ea(F2m) of order n

Output: kP

1. use Algorithm 4.2 to compute = k part mod

2. Use Algorithm 4.3 to compute

3. Compute Pu= αuP, u Є{1, 3, 5, . . . , 2w−1-1}

5. For i= l − 1 down to 0

5.2.1 Let u be such that αu = uiorα−u = −ui

5.2.2 if u >0 then Q = Q + Pu

5.2.3 else Q = Q − P−u

6. Output (Q)

Pre-computation stage of Algorithm 3.38 costs

(2w−2 − 1)A, while loop costs approximately

. Thus, the expected running-time of

Algorithm 3.4 is

 (4.1)

5. Endomorphism

Endomorphism has a crucial role in the theory of

elliptic curves. An endomorphism of an elliptic

curve E over a field K is defined as

homomorphism on given by rational

functions. That is,

© 2014, IJOCIT All Rights Reserved Page 398

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

Where g1 and g2 are rational functions on E

(quotient of polynomials) and

for all P1 and The set of all

endomorphism of E over K forms a ring under

addition and composition [25], called the

endomorphism ring of E over K. The

characteristic polynomial of an endomorphism

is defined to be the least degree polynomial

,

if it exists.

 5.1. Endomorphism-Based Scalar

Multiplication

Scalar multiplication can be performed faster by

using a special endomorphism of the curves. In

general, let be an endomorphism of an elliptic

curve E(Fq) and let #E(Fq) be divisible by a

prime r, but not by r2. Then, by the properties of

commutative groups, there exists only one

subgroup of order r of E(Fq). Having prime

order implies being a cyclic subgroup. Let it be

generated by P, then, has order r, since is

an endomorphism. Hence, , that is,

for some In fact, is a

root modulo r for characteristic polynomial of .

We can apply above observations to scalar

multiplication kP as follows: we find the

expansion of k. However, since is too large, it

is desirable to represent k as k = k1 + k2 (mod

r) where k1 and k2 have approximately half the

length of k. Then, kP= k1P + k2P = k1P +

(k2P). Computing (k2P) is easy; it is just a

one field multiplication. So, it is reduced to

computing k1P and k2P. After finding k1 and k2,

applying an interleaved right-to-left scalar

multiplication method to k1P and k2P reduces

the number of doubling operations

approximately to half. if k1 and k2for a given k

and (decomposition of k,)can be computed

efficiently, The gain is considerable.

 5.2. Decomposition of Scalar

It is necessary to find k1 and k2 satisfying k =

f(k1, k2) = k1 + k2 (mod r) and number of bits

© 2014, IJOCIT All Rights Reserved Page 399

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

of k1 and k2 are approximately half the number

of bits of k, which means that k1 and k2 are

small or is small. Thus, the aim is to find

a short vector u such that f(u) = k. the Trivial

solution is v = (k, 0), but this is not short. The

approach is as following:

(1) find two vectors v1 = (a1, b1) and v2 = (a2,

b2) in Z × Z satisfying

(i) v1 and v2 are linearly independent over R.

(ii) f(v1) = f(v2) = 0.

(iii) v1 and v2 are short themselves, that is,

 is small since ai and bi have half the bits

of k which can be at least r, then it is

approximately

(2) find a vector v in the integer lattice generated

by v1 and v2 that is close to (k, 0). Then, u = (k,

0) − v is a short vector with

f(u) = f((k, 0)) − f(v) = k − 0 = k.

Note that sub-problems (1) and (2) may be

solved using lattice basis reduction algorithms.

However, [23]’s method is faster.

In Table 4.1, there is a comparison of scalar

multiplications in terms of their number of

additions, doublings and memory consumption.

 5.3. Mutual Opposite Form (Mof)

The left-to-right recoding method eliminates the

need for recoding and storing the multiplier in

advance. Joye and Yen [27] first proposed the

left-to-right recoding algorithm in the year 2000.

In CRYPTO2004, Okeya [28] proposed a new

efficient left-to-right recoding scheme called

mutual opposite form (MOF).The unique

property of the new singed binary representation

is that Signs of adjacent non-zero bits (without

considering 0 bits) are opposite. The maximum

non-zero bit and the least non-zero bit

are 1 and -1, respectively. All the positive

integers can be represented by a unique MOF.

 5.4. Joint Sparse Form (Jsf)

Solinas presented a right-to-left method called

Joint Sparse Form (JSF) for computing the

signed binary representation of a pair of integers,

which results in a minimal joint weight

© 2014, IJOCIT All Rights Reserved Page 400

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

compared to shamir.s method. The property of

JSF is that the average joint weight among all

JSF representations of two n-bit integers is

n/2.Of any three consecutive positions, at least

one is a double zero. Adjacent terms do not have

opposite

 signs, that is Xj,Xj+1 # -1 and YjYj+1 # -

1

 If X , Xj+1 # - 1, then Yj+1 = ±1 and Yj

= 0

 If Yj, Yj+1 # - 1, then Xj+1 = ±1 and Xj

= 0

The Algorithm is used for generating joint sparse

form of a pair of integers called JSF of integers.

 5.5. Direct Doubling

Among the various elliptic curve arithmetic

operations, point doubling is quite costlier than

point addition in the scalar multiplication over

coordinate system. Sakai and Sakurai proposed

a scalar multiplication algorithm using direct

computation of several doublings (which

computes 2kP directly from P) without

computing the intermediate points 2P, 22P,

23P.2k-1P. The concept of direct computation of

2kP was first suggested by Guajardo and Paar.

The new doubling formula was reconstructed as

below.

A1=x1

B1=3x1^2 + a

C1= -y1

D1=12A1 C1^2- B1^2

x2= B1^2 . 8A1 C1^2 / (2C1)^2

y2 = 8C1^4 . B1 D1 / (2C1)^3

The computational complexity of this formula is

(5S + 5M + I) and the existing method has the

complexity of (6S + 4M + I).

Table 1 – Comparison of Different Algorithms

A
lg

o
rith

m

Addition

D
o

u
b

lin
g

s

M
em

o
ry

3.2 -

2.5 -

2.7

© 2014, IJOCIT All Rights Reserved Page 401

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

2.8

3.1

-

3.2

-

3.3

(d-

1)

3.4

(e-

1)

4.1 - -

6. Conclusion

In this paper, we studied the scalar multiplication

on elliptic curves. We made mathematical and

computational analysis of many scalar

multiplication methods.

In order to develop a scalar multiplication

method or to improve an existing one, we first

need to analyze the properties of elliptic curves

carefully and then consider whether a recoding

method of an integer corresponds to an efficient

scalar multiplication method, and finally, use

some algebraic methods on elliptic curves.

References

[1] E Karthikeyan, “Survey of Elliptic Curve

Scalar Multiplication Algorithms Int. J.

Advanced Networking and Applications Vol.4

Issue:2 Pp: 1581-1598

[2] A. C. Yao, “On the Evaluation of Powers,”

SIAM J. Comput. 5, pp. 100-103, 1976

[3] A. Enge, “Elliptic Curves and Their

Applications to Cryptography: An Introduction,”

Kluwer Academic Publishers, 2009.

[4] C. H. Lim and P. J. Lee, “More flexible

exponentiation with pre-computation,”

Advances in Cryptography, Crypto’94, LNCS

839, pp. 95-107, Springer-Verlag, 1994.

[5] D. Bressoud,”A Course in Computational

Number Theory,” (Key Curriculum Press),

Springer-Verlag, 2008.

[6] D. M. Gordon, “A survey of fast exponentiation

methods,” J. Algorithms, 27(1):pp. 129-146,

1998.

[7] D.E. Knuth, ”Semi numerical Algorithms,” vol.

2 of The Art of Computer Programming,

Addison Wesley, 2nd edition, 1997.

[8] E. F. Brickell, D. M. Gordon, K. S. McCurley,

and D. B.Wilson, “Fast exponentiation with pre-

computation,” Advances in Cryptology

Proceedings of Eurocrypt 92, LNCS 658,

200207. Springer-Verlag, 1992.

[9] F. Morain and J. Olivos, “Speeding up the

computations on an elliptic curve using addition-

subtraction chains,” Inform. Theor. Appl.,

24:531543, 1990.

© 2014, IJOCIT All Rights Reserved Page 402

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

[10] G. Reitwiesner, “Binary Arithmetic,” Adv.

Comput. 1:pp. 231-308, 1960.

[11] H. Silverman, ”the Arithmetic of Elliptic

Curves,” Springer, 2009.

[12] J. Ho_stein, J. Pipher, and J. H. Silverman, “An

introduction to mathematical cryptography,”

Springer-Verlag, New York, 2008.

[13] J. Lopez and R. Dahab, “Fast multiplication on

elliptic curves over GF(2m) without pre-

computation,” CHES 1999 LNCS 1717 316327.

Springer-Verlag, 2000.

[14] J. Solinas, “Efficient arithmetic on Koblitz

curves,” Designs, Codes and Cryptography 19,

195249, 2000.

[15] J.A. Muir, and D. R. Stinson, “New Minimal

Weight Representations for Left-to-Right

Window Methods,” Technical Report CACR

2004-03, Centre for Applied Cryptographic

Research.

[16] K. Okeya and K. Sakurai, “Efficient

elliptic curve cryptosystems from a scalar

multiplication algorithm with recovery of the y-

coordinate on a Montgomery form elliptic

curve,” CHES 2001, LNCS 2162 126141.

Springer-Verlag,2001.

[17] K. Okeya, K. Schmidt-Samoa, C. Spahn, and T.

Takagi, “Signed Binary Representations

Revisited,” Proceedings of Crypto 2004.

[18] K.Okeya,”Signed binary representation

revisited,” Proceedings of CRYPTO.04,

[19] M. Bellare, J.A. Garray, and T. Rabin, “Fast

Batch verification for modular exponentiation

and digital signatures,” Advances in Cryptology-

EUROCRYPTO’98, vol. 1403 of Lecture Notes

in Computing Science, pp. 236-250. Springer-

Verlag, 1998.

[20] M. Joye and S. M. Yen, “Optimal left-to-

right binary signed-digit recoding,” IEEE

Transactions on Computers, vol.49, issue: 7):pp.

740-748, 2000.

[21] M.Joye and S.Yen, “”Optimal Left-to-Right

binary signed digit recoding,” IEEE

Transactions on Computers, Vol. 49, pp. 740-

748, 2000

[22] N. Koblitz, “CM-curves with good

cryptographic properties,” in: Advances in

Cryptology, CRYPTO 91, LNCS 576, 279287,

1992.

[23] P. L. Montgomery, “Speeding the Pollard

and Elliptic curve Methods of Factorization,

“Mathematics of Computation, vol.48, issue:

170,:243264, 1987.

[24] R. Gallant, R. Lambert and S. Vanstone, “Faster

Point Multiplication on Elliptic Curves with

Efficient Endomorphisms,” LNCS 2139,

CRYPTO 2001.

[25] R. M. Avanzi, “A Note on the Sliding Window

Integer Recoding and its Left-To-Right

Analogue, “Workshop on Selected Areas in

Cryptography SAC2004, LNCS 3357, pp. 130-

143, Springer-Verlag, 2005.

[26] M. Lehsaini, M. Feham, Ch. T. Hellel,

"Improvement of Scalar Multiplication Time for

Elliptic Curve Cryptosystems",978-1-4799-

1153-0/13/©2013IEEE.

© 2014, IJOCIT All Rights Reserved Page 403

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Saeed Rahimi

February, 2014 Volume 2, Issue 1

[27] S. Brands, “Rethinking Public Key

Infrastructures and Digital Certificates- Building

in Privacy,” MIT Press, p.356, 2000.

[28] T. Okamoto, “Practical identification schemes as

secure as the DL and RSA problems,”

http://grouper.ieee.org/groups/1363/addendum.h

tml# Okamoto, March 1999.

[29] T. Okamoto, “Provably secure and practical

identification schemes and corresponding

signature schemes,” Advances in Cryptology-

CRYPTO’92, vol.740 of Lecture Notes in

Computing Science, pp. 31-53, Springer-Verlag,

1993.

Authors Profile:

Saeed Rahimi is graduated in shahed

university and Emam Hosein university and his

main activity is in cryptography algorithms and e

voting systems.

http://grouper.ieee.org/

